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SOME EFFECTS OF COMPRESSIBILITY ON THE FLOW THROUGH FANS AND TURBINES
By W. PerL and H. T. EpsTEIN

SUMMARY

The laws of conservation of mass, momenfum, and energy are
applied to the compressible flow through a two-dimensional
cascade of airfoils. A fundamental relation between the ulti-
mate upstream and downstream flow angles, the inlet Mach
number, and the pressure ratio across the cascade is derived.
Comparison with the corresponding relation for incompressible
flow shows large differences.

The fundamental relation reveals two ranges of flow angles and
inlet BMack numbers, for which no ideal pressure ratio exists.
One of these nonideal operating ranges is analogous to a similar
type in incompressible flow. The other is characteristic only of
compressible flow.

The effect of variable axial-flow area is treated. Some impli-
cations of the basic conservation laws in the case of nonideal
Jflow through cascades are discussed.

INTRODUCTION

In the endeavor to obtain high pressure rise from axial-
flow compressors, the operating speeds have been increased
in recent years to compressibility speeds. The precise extent
of validity at these speeds of the incompressible-flow methods
of design of axial-flow compressor blading appears not to
have been considered heretofore.

In this paper, which describes results of a theoretical
investigation made at the NACA Cleveland leboratory during
1944 and 1945, the extent of validity is determined in the
isentropic case by applying the compressible-flow laws to the
ultimate upstream and downstream flow conditions in &
two-dimensionel cascade of airfoils. The resulting equations
relating the pressure ratio across the cascade, the flow angles,
and the inlet Mach number are compared with the corres-
ponding incompressible-flow relations.

The results apply to both fan-type and turbine-type cas-
cades. Although compressible-flow relations are generaily
used in the design of turbine cascades and, less generally,
in the design of fan cascades, it is thought that the compact
form of the results presented herein will render them more
easily applicable than the other methods now in use.

SYMBOLS

The following symbols are used in this report:

A flow area perpendicular to axial direction
Cp specific heat at constant pressure
M  Mach number of flow

842951 —50——10

static pressure

gas constant

entropy

cascade spacing

temperature

velocity in z-direction

velocity in y-direction

resultant velocity; also mean veloecity
z-direction (tangential) force per blade per unit span
y-direction (normal) force per blade per unit span
ratio of specific heats

angle of flow measured from axial direction
density

Subscripts:

1 upstream of cascads
2 downstream of cascade
8 stagnation

v P2 }.,qbqgﬁg'*ﬂoo_)tu"s

VELOCITY-DIAGRAM RELATIONS FOR COMPRESSIBLE
CASCADE FLOW

GOVERNING EQUATIONS

Consider the ultimate upstream and downstream compress-
ible-flow conditions, or the velocity diagram, for the cascade
of airfoils representing a fan or a turbine-blade arrangement
(fig. 1). The conservation laws applied between the up-
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FIaURE 1.—T wo-dimensional caseade,
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stream section and the downstream section where the flow
is assumed to be uniform and to pass through equal areas are:

Continuity
PV =paly 1)
Energy
1 1
ety wi=cslyt we (2
Momentum
Normal, y-direction: %7=p1—p2+p1‘1)12—p2022 3)
. . X _
Tangential, z-direction: ?=p101(u,—u2) . (4)
In addition, there is the gas law
p=pRi (8)
and the isentropic relation
l’z.__(& v
b4 /M ®)

(The assumption of the isentropic exponent v prevents the
direct application of the results to fan or turbine blading. It
appears, however, that use of a suitable polytropic exponent
n#vy allows direct application in many cases.)

Substitution of equations (1), (5), and (6) in equation (2)
yields the fundamental relation between the flow angles A, and
s, the pressure ratio ps/p:, and the inlet Mach number 34;:

: =
)\/l*w:%wf? &) -1 o

cos M__(Ps
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For the case of incompressible flow, the expression cor-
responding to equation (7) may be derived from the equations
corresponding to (1) and (2); namely

Continuity (incompressible): v,=0, (8)
Bernoulli (incompressible): p1+% pl‘w12=P:+% prws? (9)
The result is
cosh_ [, _2 &_) |
cos M—\/l 5z \p, ! (10)
in which the substitution .
Mp="C (11)
D
Y
P2

has been made for comparison with the corpressible-flow
relation (equation (7)). Equation (10) may also be derived
as the limiting form of equation (7) when the specific-heat
ratio v approaches infinity. (The incompressible fluid may
be regarded as the limiting form of a compressible perfect

fluid in which the velocity of sound ‘/ 'Y% approaches infinity.
Inasmuch ag p and p remain finite, v must becoms infinite.)
GRAPHICAL REPRESENTATION OF EQUATIONS

For a given inlet Mach number Af; and pressure ratio
Dafp1, equation (7) shows that the flow angles A; and A, are
not specified but only their cosine ratio. A plot of ths cosine
ratio cos M\fcos A against the flow deflection A;—X;, with
M or A; as a parameter (fig. 2), illustrates the possible indi-
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b vidual flow angles and deflections for a given cosine ratio.
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FIGCRE 3.—Relation of compressible Sow angles to pafp for various Inlet Mach numbers.

The flow angles A; and A; may be visualized as the stagger
angles of the tangents to the camber line of the cascade
blading at the leading edge and the trailing edge, respectively.
For low-speed flow, at least, and for shock-free entry, this
correspondence is approximately valid for cascads solidities
of the order of unity (solidity=Dblade chord/blade spacing)
and increases in validity with the solidity.

The contours representing equation (7) are shown in figures
3 and 4. Several of the contours of figures 3 and 4 are com-
pared with the corresponding contours in the incompressible
case (equation (10)) in figures 4 and 5.

COMPARISON OF COMPRESSIBLE AND INCOMPRESSIBLE EQUATIONS

The comparison between the compressible and incompres-
sible equations (figs. 4 and 5) reveals considerable differences
except in the pressure-rise range (ps/p;)>1 at low inlet Mach
number (3£;<0.4). Outside this range consider, for exam-
ple, the determination of the blade camber of a high-solidity
pressure-rise cascede designed to operate at an inlet-flow
angle of 45°, an inlet Mach number of 0.80, and a pressure
ratio of 1.2. (Camber is defined as the difference in angle
between leading-edge and trailing-edge camber-line tangents.
Camber therefore approximates A\ —2X, for high-solidity
cascades.) By the incompressible contour 1f;=0.8 in figure
5 and by use of figure 2, the camber should be 26.9°. Aceord-
ing to the compressible curve, on the other hand, the camber
should be 9.4°, or 65 percent smaller. If the inlet Mach
number is increased to unity, the results are:

Incompressible eamber, degrees_ ____ ..

Compressible camber, degrees__ e L5

As an example of the differences between compressible and

incompressible flow in the case of a pressure drop through the

cascade, assume N=0°, Af;=0.80, and p./p;=0.7. Then

from figures 2 and 5
Incompressible-flow deflection, degrees______ . ____.___ B
Compressible-flow deflection, degrees 13. 1
Thus, the effect of compressibility in the normal operating
range of moderate pressure ratios is to lower substantially

the required flow deflection for a given pressure ratio.

On the other hand, for given flow angles, that is, given

cos Mfcos Ag, figure 4 shows that for normal compressor
operation, (cos Mfcos A}<<1and (psf/p1)>1, the compressible
pressure ratio increases with the inlet Mach number A1,
at a greater rate than the incompressible pressure ratio.
For example, if cos M/fcos A»=0.8 in normal compressor
operation and A£;=0.8, the incompressible pressure ratio is
1.16 and the compressible pressure ratio is 1.27.

FURTHER DISCUSSION OF THE COMPRESSIBLE CASE

The surface representing the fundamental equation (7) is
the locus of all possible isentropic <{loss-free) operating
conditions of the cascade and noothers. Thecontourprojec-
tions of this surface show that certain ranges of operating
conditions are unattainable in isentropic flow; thus, in figure
5, there is no inlet Mach number }f, to correspond to cosine
ratios cos Mfcos ha and pressure ratios ps/p; in the plane
regions AOB and COD. '

The reason for such nonideal regions can be seen by analogy
with the incompressible case. The incompressible 1f; con-
tours entirely exclude the first and the third quadrants,
relative to point O as origin. Consider the

case
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cos A,
cos

Cosine ratio,

2
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Fressure ratio, p/n,

F1ovRE §,—Comparison of compressible and Incompressible flow angles as function of pyp: for varlons inlet Mach numbers.
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(coshifcos A} >1. Inasmuchas the exitangle A; is greater than
the entrance angle X;, the exit tangential-velocity component
is greater than the entrance tangential-velocity component.
Because the axial velocity is constant, a pressure drop
(ps/p1)<1 is required in accordance with Bernoulli’s
theorem, and the operation point for (eos M/cos Xz} >>1 cannot
lie in the first quadrant but must lie in the second quadrant.
Similarly, operating points for (cos Aj/cos Az)>1 musi lie
in the fourth quadrant. The partial overlapping of the
compressible-flow curves into the first and third quadrants
is due to the influence of compressibility on the axial com-
ponent of velocity.

Another type of nonideal region is shown in figure 4. For
fixed (cos NjJeos A)>1, an isentropically impossible range
of inlet Mach numbers exists, which increases with cos A/cos .
At cos MNjcos W=1.1, for example, the excluded
M, range is 0.695<<M;<1.37. This type of nonideal range
is not present in the incompressible case shown as tne
dashed curves of figure 4. The lower limiting inlet Mach
numbers of this renge correspond to maximum flow through
the cascade, for, because cos M/eos X, is constant along each
curve in figure 4, the maxima of M, also correspond to the
mexima of 1f; (cos M/eos A;). For a given high-solidity
cascade, A; varies only slightly as the inlet conditions are
varied; therefore, Af; cos N, which is proportional to the
flow through the cascade, is likewise & maximum at these
points. This particular limiting Mach number is indepen-
dent of the blade-shape details and, hence, of the ratio of
minimum flow area to inlet area.

If a cascade is designed to operate in an isentropically
impossible region, presumably much greater losses, caused
by flow separation and shock waves, will occur than would
be encountered at an ideally permissible operating point.
Such nonideal designs appear to be not at all unusual on the
basis of incompressible-flow theory.

Of considerable interest is the fact that, at the maxima
and the minima of all cos N\/cos A; contours, the exit Mach
number 1f; is unity, which may be shown as follows: The
maxima and the minima of the cos A\i/cos X; contours in figure
4 correspond to the maxima of the M, contours in figure 3.
The loci of these maxims are indicated in both figures. The
condition for maximum cos A/cos As along an A4, contour is
obtained by differentiation of equation (7) as

r+1l
M COS 7\1_(1;3 "2y (12)
T cos Ag
The downstream Mach number A,
M=
Pa (13}
v
P2

can now be written, with the aid of equations (1), (2), (5),
and (8), as
1, cos M

COS A\;

7_-F1
&) 2y
»
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Substitution of equation (12) in equation (14) yields the
desired result, namely, M;=1. In the limiting case A1,=0,
equations (12) and (7) show that

cos M\
€08 A2/ M=o

zz) - T_
(.P im0 7+1 =0.528

This limiting pressure ratio is the same as the critical
pressure ratio for local Mach number of unity in one-
dimensional compressible flow.

Points to the right of the maximum on an M; contour
(fig. 3) correspond to subsonic exit conditions M,<1;
whereas points to the left of the maximum correspond to
supersonic exit conditions M,> 1. In figure 4 the subsonic
exit region is to the right of the locus of maxima and minima
and the supersonic exit region to the left. The proof is as
follows: From general principles, the ideal continuous flow
through a cascade is reversible; that is, equation (7) remains
valid if the subscripts 1 and 2 are interchanged. This
validity may salso be shown directly by substitution of
equation (14) in equation (7) to eliminate Af;. Consequently,
the exit Mach number Af; can be determined from the
curves that represent equation (7); thus, in figure 3, the exit
Mach number 3£ for the operating conditions Af;, ps/p:, and
€08 \;/cos \; is obtained by interpolation from the Af contours
at the point for which the coordinates are the reciprocal
quantities p;/p, and cos Asfcos A,. This reciprocal relation,
applied to the loci of the maximum points on the M, contours
(fig. 3), yields the M;=1 contour (where now Af;=3%,), by
the proof previously given; therefore, the reciprocal relation
applied to & point to the right of a maximum yields a point
in the subsonic region relative to the 34;=1 contour and
vice versa.

EE X

(v=1.4)

VARIABLE AXIAL-FLOW AREA

In many multistage compressors and turbines, the axial-
flow area is continuously varied in order to maintain the
axial-flow velocity constant. The effect of & change in
axial-flow area through a cascade can be very simply taken
into account in the preceding analysis. The equation of
continuity (equation (1)) is now

P10 A1 =psvsAs (15)

or

(16)

where A, and A; are the axial-flow areas upstream and down-
stream, respectively, of the cascade, and

P1U1G=Dp203

=<
a=7 1D
The only change required in the fundamental equatibn (N
is that the flow-angle parameter cos A;/ cos A; be replaced by
@ (cos M fcos Ag).
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ENERGY RELATIONS FOR CASCADES

If the isentropic relation (equation (6)) is dropped, equa-
tions (1) to (5) relate ultimate conditions on each side of a
cascade within which losses may occur. The equations may
also be regarded as relating conditions across two sides of a
line of discontinuity separating two regions of uniform flow,
with the force densities X/s, ¥ /s acting on the fluid along the
discontinuity. The oblique shock wave in supersonic flow
represents the special case in which X/s=Y/s=0.

Without the isentropic relation there is, of course, no longer
2 unique dependence of the flow-angle ratio cos A\/cos As
on the pressure ratio pfp; and the inlet Mach number Af;.
(See equation (7).) Equations (1) to (5), however, yield
information concerning the relation between the pressure
ratios that might actually occur, the forces on the blade,
and the losses in thie cascade. - Suppose, for example, that
a high-solidity compressor cascade were designed for & certain
ideal operating point. * The ideal forces on the blades could
be calculated from equations (3) and (4). In the actual
flow the pressure ratio would be less than the ideal value.
The flow angles, however, bécause of the high solidity, could
be expected to remain nearly unaltered. On the assumption
of an ideal flow-angle ratio and a smaller than ideal pressure
ratio, the actual blade forces could be computed by equa-
tions (3) and (4). The vector difference between the actual
resultant force and the ideal resultant force is a difference
force caused by friction and shock-wave losses. The corre-
sponding stagnation-pressure loss or, equivalently, the
entropy increase across the cascade, can also be calculated.

An example of the type of computation just outlined fol-
lows: Among other things, it will be shown that the difference
force is neither at right angles to the ideal resultant force nor
in the direction of the mean relative flow. Although, as
will be shown, the incompressible equations predict that the
difference force is always in the axial direction, the compressi-
ble equations show that this is far from being the case.

The losses in cascade flow between an ultimate upstream
and an ultimate downstream uniform-flow condition may be
expressed in terms of the actual static-pressure ratio ps/p:
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and the density ratio ps/p: as follows: In the downstream
condition, the ratio of stagnation pressure p, . to static pres-
sure p, is isentropically related to the corresponding Lempera-

ture ratio as
1
pc 2) _a_ : . o
ta

Similarly, in the upstream condition,

Pn)_ tea o

If the preceding two equations are divided, remembering
that ¢,,=1,» because no energy is supplied from the outside,
and if pressure and density are substltut(.d for temperature
by the gas law, there results

<P2 7—1
Pz __ AV VAN

Ps (Zp’:)'r—l

In isentropic flow, equation (18) reduces, of cowrse, to
Pes=p,;1. In an actual flow p,. is less than p,; corros-
ponding to an entropy increase S;—Si, given ;by the well-
known formula

(18)

S;—S,=R log, Dus

Pia (19)

Substituting the normal velocity ratio ry0; into equation (18)
yields, by the continuity equation (1),

b ()_ p,)—:: o @

The normal velocity ratio 2,3/v; can be expressed in terms of
the static-pressure ratio ps/p:, the inlet Mach number Af;,
and the cosine ratio cos A\y/cos A, by equations (1), (2), and
(5). The result is

P _ - 1 - p ' —
TP o 7 BY R
v 1 cos?hg \
also
Us_ Uz Ty By _land 1y )
Uy T Yy “Tan n, Ay (22)

The expressions (3} and (4) for the blade forces may be
written in nondimensional form as

Y 1———71142 cos? N (——-1)

9 P (23)

F1_|_('Y;:1) _Mlz .

2
1) M 25 ;; 1 (21)
)
X _ . tan A g)_,)
o, 1.(1111 cos® N (1 ~tan o, (24)

As examples of the use of the preceding equations, losses
and blade forces for a pressure-rise and a pressure~drop cas-
cade have been computed and the results are listed in table I.
For both cases an inlet Mach number of unity was assumed
with inflow and outflow angles of 55° and 45°, respectively.
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These flow angles, though possible for pressure rise, are im-
possible for pressure drop by incompressible-low theory
(under the condition of constant axial-flow ares assumed
here). The ideal quantities were first calculated and then
for the loss case, new pressure ratios were assumed, which
yielded the stagnation-pressure losses shown. It will be
noted that the static-pressure ratio of 0.5, which yields a
stagnation-pressure ratio of 0.942 in the pressure-drop case,
is greater than the ideal static-pressure ratio. In incom-
pressible flow it would have to be lower.

+Y
U, (b)
(a) Pressure rise.
(b) Pressure drop.
F16URE 6.—Typical cascade forees and veloelties.

The cascade-flow angles and forces are illustrated in figure
6. The resultant force [, the difference forece d, and the mean
velocity w bear no simple directional relation to each other.
Because, in incompressible flow (under the conditions of

129

constant axial-flow area assumed here), v./s;=1 and, in high-
solidity cascades,%,/u; remains unchanged from the ideal case
by equation (22), it is evident from equations (3) and (4)
that only the static pressure cen change in going from the _
ideal to the loss case. The incompressible difference force
must therefore be in the axial direction. This conclusion
for the incompressible case was reached in reference 1 by
another method. The losses in high-speed cascade flow must
evidently be considerably influenced by compressibility

effects. :
CONCLUSIONS

1. For inlet Mach numbers less than 0.4 in the normal
operating range of an axial-flow pressure-rise stage, the
relations for compressible and incompressible flow yield
very nearly the same results. For larger inlet Mach numbers
the discrepancies become considerable.

2. The compressible equations show the existence of
nonideal operating renges, which are not indicated by the
incompressible equations. Conversely, certain operating
ranges, which are excluded by the incompressible equations,
are possible according to the compressible equations.

3. In certain ranges of the flow angles, two possible pres-
sure ratios are predicted for given inlet Mach numbers and
flow angles. R
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TABLE I-LOSSES AND BLADE FORCES FOR CASCADES IN
COMPRESSIBLE FLOW

[}\1= 550; )\g=4:5°; M1= 1]

Pressure rise

Idesl With Tdeal With

losses losses
Pressure ratio, py/pr.o oo L 522 s1.4 0. 462 2 0.5
tion ¥ressu.re ratio, poy/pra oo 1 0.850 1 0. 42
Tangential force, Xfspro. ... 0.315 0.290 —0.143 —0.111
Normal foree, ¥/8 Proceceeeenecmman an —0.403 —0. 307 0.199 0.192
Ratlo of resultant force to difference
J (o] AR L] 817 - 7.68

s Assumed valnes.



